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CONTACT RIEMANNIAN SUBMANIFOLDS

MASAFUMI OKUMURA

Introduction

In a previous paper [3] the author studied a submanifold of codimension 2,
which inherits a contact Riemannian structure from the enveloping contact
Riemannian manifold.

In the present paper, the author generalizes the results obtained in [3] to
submanifolds of codimension greater than 2. In §1 we recall first of all the
definition of contact Riemannian manifolds and some identities which hold in
such manifolds, and in § 2 we give some formulas which hold for submanifolds
in a Riemannian manifold. After these preliminaries, § 3 contains some identi-
ties which hold for submanifolds in a contact Riemannian manifold. In § 4 we
define the notion of contact Riemannian submanifolds in the same way as
given in [3]. In §5 we define an F-invariant submanifold and study the rela-
tions between contact Riemannian submanifolds and F-invariant submanifolds.

§ 6 is devoted to a condition for a submanifold to be a contact Riemannian
manifold. In the last section, § 7, we introduce the notion of normal contact
submanifolds in a normal contact manifold, and obtain a condition for a con-
tact Riemannian manifold to be a normal contact manifold.

1. Contact Riemannian manifolds

A (2n + 1)-dimensional differentiable manifold A7 is said to have a contact
structure and called a contact manifold if there exists a 1-form 7, to be called
the contact form, on M such that

.1 7 A (d)r % 0

everywhere on M, where d7 is the exterior derivative of 7, and the symbol A
denotes the exterior multiplication.
In terms of local coordinate {y*} of M the contact form 7 is expressed as

(1.2 7 = ndy*.

Since, according to (1.1), the 2-form d7 is of rank 2n everywhere on M,
we can find a unique vector field & on M satisfying
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(1-3) 7715‘ =1 s (df/)us‘ =0.

It is well known that there exists a positive definite Riemannian metric g,,
such that the (1, 1)-tensor F, defined by

(1.4) 28,.F; = (d}),,

satisfies the conditions

(1.5) F/F! = —& + .6,

(1.6) 7.F =0,

(1.7 2,8 =1,

(1.8) &.FFr =28, — 07, . T

(S. Sasaki [4], Y. Hatakeyama [1]). The set (F;, &, 7;, §,.) satisfying (1.1),
(1.3), (1.5) and (1.7) is called a contact Riemannian (or metric) structure, and
the manifold with such a structure is called a contact Riemannian (or metric)
manifold.

If in a contact Riemannian manifold the tensor, defined by

N;uz‘ = Fp»(aqu‘ - ava‘) - Flv(avF#‘ - aFF"‘)

(1.9 . .
+ 815‘77‘” - a‘uE“’?} ’

where 3, = 8/dy” vanishes everywhere on M, then the structure is said to be
normal, and the manifold is called a normal contact manifold or a Sasakian
manifold. In a normal contact manifold we have

(1.10) Vin=F,,
(1.11) ﬁFFz;thgF:_ﬁ;gpla

where 7 denotes the covariant differentiation with respect to the Riemannian
metric g. Conversely, if (1.11) holds, the manifold is a normal contact mani-
fold (Y. Hatakeyama, Y. Ogawa, and S. Tanno [2]).

2. Submanifolds in a Riemannian manifold

Let M be an m-dimensional oriented differentiable manifold and ¢ be an
immersion of M into an (m + k)-dimensional oriented Riemannian manifold M.
1n terms of local coordinates (x', - - -,x™) of M and (3, - - -, y™*¥%) of M the
immersion ¢ is locally expressed by y* = »(x', -, x™),x =1, .-, m+k.
if we put B = 9y, 3; = 9/9x%, then B;* are m local vector fields in M spann-
ing the tangent space at each point of M. A Riemannian metric g on M is
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naturally induced from the Riemannian metric § on M by the immersion in
such.a way that

2.1) 85 = &.B/BS .

Since M and M are both orientable, in each coordinate neighborhood U of
peM, we can choose k fields of mutually orthogonal unit normal vectors
NgF(A=1,...,k) of M at each point of U in such a way that (N5, ---,
N, B;) is positively oriented in M, provided that the frame (B, i=1, - - -, m)
is so in M.

Let Hy;; (4 =1, ---,k) be the second fundamental tensors, and L, the
third fundamental tensors of the immersion ¢. Then we have the following
Gauss and Weingarten equations:

&
(2.2) Vqu;‘ = AZ_IIHA_;'-:; a5

k
(2.3) ViNs° = —H,'B* + 32—:1 LypiNg",

where V; is the so-called van der Waerden-Bortolotti covariant differentiation,
where V ,B;* and V ;N ;- are defined respectively by

h

5 5 x5 f; B
VJB.,; = a_,BL — {j Z}Bh + {2 #}szBL >

~

PN = 0N+ [E BN A= b,

~

{ji k} and ‘ 3 #} being the Christoffel’s symbols of M and M respectively.

3. Submanifolds in a contact Riemannian manifold

Let M be a (2n + 1)-dimensional contact Riemannian manifold with a con-
tact Riemannian structure (F, &=, 7 &) and M a (2m + 1)-dimensional sub-
manifold in M. The transform F,*B;* of the tangent vector field B,* by F,* can
be represented as a sum of its tangential part and its normal part, that is,

(3-1) Fx‘Bz'x == fihBh‘ + 2; fAL'NA‘ .

In the same way, we can put

(3.2) FN2=hBf + 3 hyyNy, A=1,--.,2(n — m) .
A B

From these two equations we have
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(3.3) h = —f,,

A A
(3-4) hAB = —‘hBA .

On the other hand, &* being tangent to M is expressed as a linear combina-
tion of B;* and N ;. Hence we can put

(3.5 § = uByt + T uNyt
which implies

(3.6) u; = 7By,

3.7 ug =Ny

Transforming both members of (3.1) by F,- and making use of (1.5), (3.1), -
(3.2),(3.3) and (3.5), we find

—B + wwB + %: uugNgt = (f27 + ; fiAfj)BjF
A
+ 2 Gt + 2 fihap)Ny"
B B A A
which implies

(3.8) fffn? = =01 + uad + 2 fif

A A A

3.9 fi'fn = uqt; — 2 fihga
4 F B

Transforming again both members of (3.2) by F,* and taking account of (1.5),
(3.1),(3.2),(3.3) and (3.5), we obtain

uuiB# — N+ 33 uupNyg* = —(fif + 2 hapf’)B s
B B B
+ (= fifi + 2 hachep)Ny
B 4B c

which implies

(3.10) fif = —2 hpf? — uu’
1 B B

3.1 fi}fii = 0,48 — Uylip + ; hachey
4 A

On the other hand, conditions (1.6) and (1.3) can be rewritten respectively as
Fpé = FXu'B! + J usNSH) =0,
A

77‘152 = (W'B, + 2 uN JWBy + ; upNgdH =1,
1
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from which we easily have

(3.12) uwifpr = > ufa"
A
(3.13) W, = — 3 ughp, ,
A B
(3.149) wu, =1 — Y us.
A

Let M be a normal contact manifold. Differentiating (3.1) covariantly and
making use of (1.11), (3.2) and (3.5), we obtain

w,B; — g;;(u*B," + ; uyN %) + ; Hy,(— "By + § h N 5%
— ijihBh‘ + ; (fihHAjh,NA‘ + VjZiIAVK _ ﬁiHAthh‘
+ 2 filpasNS)
B B
which implies
(3.15) Vifin = U850 — Un8s; — ; thAhi —IiHAjn) >
(3.16) Vj‘{i = —U8; + ; (Hpjihga —giLBAj) — f"H g5 -

Differentiating (3.2) covariantly and making use of (1.11),(3.1), (3.2) and
(3.5), we have

u,By — Hy (B + T hNs) + % Lun(— f5B + 3 haoNe)
= —Via"By' — 2 (' =V Hap)N "
+ ; hap(— Hp,'B;* + %} LyoiNe')
which implies
Vits' = —w,ds + Hy'o' + 2 (hapHy' — Lugifs’) 5

3.17) thAC = fAiHCji - giHAji + ; (LAthB(J - LBthAB) .

Differentiating (3.5) covariantly and using (1.10) which holds in a normal
contact manifold, we find

fjiBi‘ + ; IJNA‘ = V_’u?'Bzr + ; uiHAjiNA‘
+ ; {VjuANA‘ + u(— HAJlBi' + %‘ LBAJNB‘)} »

which implies
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(3.18) V= ft+ X uH,

(3.19) Viu, =I, — u'H,;; — ; UpLpyy -

4. Contact Riemannian submanifolds

Let M be a (2n + 1)-dimensional contact Riemannian manifold, and M a
(2m + 1)-dimensional orientable differentiable submanifold in M. We define a
1-form u on M by

4.1 u = udxt = 3,Brdxt

in terms of the contact form 7 = #,d)*.

Definition 4.1. Let g;; be the induced Riemannian metric of M, and u
the 1-form defined by (4.1). If there exists a pair of positive constants ¢ and
¢ such that » = tu and G,; = cg,; constitute a contact Riemannian structure
on M, then we call the submanifold M a contact Riemannian submanifold
of M.

Since (5, G) is a contact metric structure in a contact Riemannian sub-
manifold M, the linear mapping ¢,¢: T(M) — T(M) and the vector field &
defined respectively by

4.2) 2¢thhi = aj7712 — aiﬂj s M =‘ Gjiéj

satisfy the conditions

(4.3) pEl =1,
(4.4 ¢j’:Ej =0, 7/i¢ji =0,
(4.5) b "t = —0% + & .

Directly from Definition 4.1 we have

Proposition 4.2. Let M be a contact Riemannian submanifold in M, and
'M a contact Riemannian submanifold in M. Then 'M is a contact Riemannian
submanifold in M.

Proposition 4.3. Let M be a contact Riemannian submanifold of M, and
'M a submanifold of M. If 'M is a contact Riemannian submanifold of M,
then 'M is also a contact Riemannian submanifold of M.

Proposition 4.4. Let M be a contact Riemannian submanifold of a contact
Riemannian manifold M. If the dimension of M is greater than the codimen-
sion of M in M, then we have

4.6) 84 =15
@7 u = gt
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Proof. From the definitions of &¢, 5, G;; we have

(4.8) gl = Glig, = Lgtu, =L,
c c
from which
(4.9) 1 = vjEf = tuj_t.uf — t_zuiui ,
: c c
(4.10) wut =clt.

On the other hand, the two equations

2f; = ZleBi‘FI: = leBi‘(Vlﬁp - ’7p771) =V,u, — Viu,,
2¢ji = 3J77,, - 61;77]' = I(V,ui _— Viuj)

imply f,; = (1/8)¢;; and hence
(4.11) f = 8 = —Ghpy = =g/

Since f;*, ¢, satisfy (3.8) and (4.5) respectively, (4.11) together with (4.10)
implies

4.12) & utu, 4 T, = C_Z(_ & + -tiujuh) .
44 4 ? c

We assume now that there is a point p in M, at which the 2(n — m) + 1
vectors uf, f,4 (A =1, --.,2(n — m)) are linearly dependent. Then we
can find a vector v*(p) orthogonal to the subspace spanned by u! and
fit(Ad=1,...,2(n — m)), since M is of dimension greater than 2(n — m).
Transforming this vector v*(p) by (4.12), we get v*(p) = (¢/t)*v™(p), that is,
(c/D* = 1, which together with (4.8) and (4.11) implies the Proposition.

Next we suppose that ¢ and f,! (4 = 1, ---,2(n — m)) are linearly inde-
pendent at any point of M. Then (3.12), (4.4) and (4.8) imply > yu,f,"=f
= (c/t)¢,"(c/&! = 0. Since f,"’s are linearly independent, we have, in this
case,

4.13) u, =0 AA4=1,...,2(n — m),
which and (3.1) give
“4.19) uif, = 0.

A

Transforming f,? by (4.12), we have
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2
(4.15) — D= -
4 BB AB 1“4

because of (4.14). Substituting (3.11) into (4.15) we get Z hAchCth =
—(c/ t)zf" implying

2
(4.16) 3 hachos = — Z054 5
and consequently
2 2
(4.17) S hiohey = — S Y 840 = —2(n — m) <.
4. £ a il

Furthermore, from (4.11) we obtain (c/)¢;*¢,’ = —3§;/ + wuw + > f, f,

A A4

which yields
2
_ 2m% = —2m — 1 + ut + 2(n — m)+ AZZChAchm

because of (3.11). On the other hand, u, = 0 and (3.14) imply wu’ = 1.
Thus we have, from the equation obtained above,

(4.18) —h%:ﬂmﬂ@+§h%r

Combining (4.17) and (4.18), we have (¢/c¢)* = 1, which comgletes the proof.
Corollary 4.5. G;; = (w,u)7'g;;, 7 = Ww)'u, .

5. F-invariant submanifolds

F-invariant submanifolds of a contact Riemannian manifold are recently
studied in [5]. In this section we show that any F-invariant submanifold is a
contact Riemannian submanifold.

Definition 5.1. Let M be a (2n + 1)-dimensional contact Riemannian
manifold. A (2m + 1)-dimensional submanifold M of M is called an F-invariant
submanifold if the tangent space of M is invariant under the action of F,.

Proposition 5.2. Let M be a 2m + 1)-dimensional submanifold of a con-
tact Riemannian manifold M. In order that M be an F-invariant submanifold
it is necessary and sufficient that

(5.1) %]hAChCB: —5}13 .
Proof. We first assume M to be F-invariant, and then by (3.1) show that

FfB;} = f«;th' s F/z‘NAl = }; hBANB' )
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or equivalently f,t=0 (4 =1, ..., 2(n — m)). Consequently, we have
uu, = 0 because of (3.9). If there is a point p on M, where u,(p) = 0, then
(3.8) implies f,’f;* = —&%, which means that the tangent space at p is even-
dimensional, contradicting our assumption. Hence we have u, = 0 in M.
Therefore we have Y, oh,chgs = —8,5 by virtue of (3.11). Next, we assume
that M is a submanifold of M satisfying the condition (5.1). Then, by means
of (3.11), we have f,f, + u,upz = 0, and therefore 3 ,f,f.; + u, = 0.
Thus we get f,* = 0, u, = 0, which show that M is F-invariant.

Proposition 5.3. If M is a 2m + 1)-dimensional F-invariant submanifold
of M. Then M is necessarily a contact Riemannian submanifold of M.

Proof. Since M is F-invariant, as seen in the proof of Proposition 5.2
wehave f,i =0, u, =0(4 =1, ..., 2(n — m)). Therefore, (3.8) and (3.14)
imply f*f,! = —&] + w/, wut = 1. If we now put 5 = u, G;; = g;; then
we find

Vi, — Vi =V, — Viuy; =V,(3,B5) — V.(j.By)
= BBV, — BBV i, + zA; (H 43N = — H ;N 7,
= Bi‘le(ﬁzﬁ; - 7,771) = 2fji ’

which means that the (5, & is a contact Riemannian structure on M. Thus
the proof is complete.

6. Conditions for a submanifold to be a contact
Riemannian submanifold

In this section we states a condition for a submanifold M in a contact
Riemannian manifold M to be a contact Riemannian submanifold. Since for
this purpose we have to use Proposition 4.4 so that we always assume in this
section that the dimension of M is greater than the codimension of M in M.
First we have

Proposition 6.1. Let M be a (2n + 1)-dimensional contact Riemannian
manifold. In order that a submanifold M in M be a contact Riemannian sub-
manifold it is necessary and sufficient that the relations

6.1 u,u" = const. + 0,
(6.2) i = =+ ()

" be both valid. :
Proof. Let M be a contact Riemannian submanifold of M. Then from
Proposition 4.4 it follows that f,* = ¢, and consequently

(6.3) fif = ¢ih¢lzj = =8+ pél = —8] + .
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On the other hand, we have 7,&! = tu,£* = tu,;u* = 1, which implies

6.4) uut = - = const. .

Combining (6.3) and (6.4), we get (6.1) and (6.2).
Conversely, if (6.1) and (6.2) are both valid, putting

771 = (u-,-ur)_lui 3 Gji = (u-rur)-lgji 3
we have
7€ = (Wu)'u,G%y = (uu) luut = 1,
foft = =8 + (W) 'uw = —84 + 987 .

Thus (f,¢, 5, G'*y;, G,;) is an almost contact Riemannian structure on M.
By virtue of (6.1) and (1.4) we now have
Vini — Vigy = @u) "0 u, — Vuy)
= (u'ruT)_I(Vj(Bilﬁl) — Vi(lem))
= (wu)(B/B#V 7 — B/BW iy + % (Haps — HaDN o7
A
= (u,u) 'B/B(W 7, — Vij,) = 2(uwu)"'BBjF,,
= 2uu’)f;; = 2Guf",
which shows that (5, G) is a contact Riemannian structure on M.
Proposition 6.2. Let M be a contact Riemannian manifold. In order that

a submanifold M in M be a contact Riemannian submanfold, it is necessary
and sufficient that the following relations be both valid:
(6.5) uu" = const. ,

r

(6.6) fat = —ur) 33 ughy ut .

Proof. Let M be a contact Riemannian submanifold in M. Then from
Proposition 6.1, we have (6.5). On putting

(6.7 faf = Pau’ + Pj? Ma=1.-,2n—-m),

where P,? are vectors orthogonal to u?, if we transvect (6.7) with u;, we get
fatu; = u;u*P,, which together with (3.13) implies

(6.8) P, = (uu)f jfuy = —(uur)™ ;z;‘ ughpg, .

Substituting (6.8) into (6.7), we have
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(6.9 fat = —@u)™ z ughg ut + P,
which implies f,*fz = (u,u’)‘lg)ubhp AUchcs + P,*Pg, and consequently
(6.10) ZA] fafae = (u,u’)"‘A§c ughpaiche, + ZAJ P P, .

On the other hand, since M is a contact Riemannian submanifold, from
(3.9) we have uif*f 5 = (Wuu, — 3 gfpthp, = 0. Substituting (3.13) into
the above equation, we get

(6.11) (wphu, = — BZCuChCBhBA .

Then a combination of (6.10) and (6.11) gives
(6.12) ZA.‘ fAifAi = Z (qu + PAiPAi) .
A

However, by virtue of (3.8) we obtain }; f,*f4; = f;uftY + 2m + 1 — wust,
which reduces to

(6.13) 2 fafas =1 — wut = 3 uy?

because of (3.14) since M is a contact Riemannian submanifold. Comparing
(6.12) with (6.13), we have },,P,P,; =0, thatis, P, =0(A =1, ..,
2(n — m)). Hence we obtain (6.6).

Conversely, if the submanifold satisfies (6.5) and (6.6), according to (3.8)
we get

fifa! = =0 + wa? + ; faif !

(6.14)
= —8f + u? + Wu)* 3 ughpuchouul .
AEc

Since f;; is skew symmetric, the condition (6.6) implies f,*u'f,, = (wubu,
— Do sfeittthg, = O because of (3.9). Substituting (3.13) into the above equa-
tion, we get

(6.15) ‘ BZ']CuChCBh,,A = —(uudu, .
Therefore (6.14) reduces to
ffd = =61 + w4+ (uur)™! ZB] ugtuu?
= —& + (uw) (uur 4 ;} uyuul

= —0{ 4+ (u,u) 'uu’ .
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Thus the conditions stated in Proposition 6.1 are satisfied, and the proof is
complete.

7. Contact Riemannian submanifolds in a
normal contact manifold

Let M be a normal contact manifold. In this section we define the notion of
a normal contact submanifold M in M. After deriving a condition for M to be a
normal contact submanifold in M, we show that any (2m + 1)-dimensional
F-invariant submanifold M in M is a normal contact submanifold.

Definition 7.1. Let M be a normal contact manifold, and M a contact
Riemannian submanifold in M. If the induced contact structure of M in M is
normal, the submanifold M is called a normal contact submanifold. )

Proposition 7.2. Let M be a normal contact submanifold in M, and"’'M a
normal contact submanifold in M. Then 'M is a normal contact submanifold
in M.

Proof. Since M and ‘M are normal contact submanifolds respectively in
M and M, there exist two pairs of positive constants (¢, ¢) and (¢, ¢’). Then,
as we have seen in §4, ‘M becomes a contact Riemannian submanifold in M
with respect to the pair (¢'t, ¢’c). We denote these contact metric structures on
M in M and on ‘M in M respectively by (3;, G,;) and (3., Gs,), and denote
the contact metric structure on ‘M in M by ('3,, 'G,,). Then we have

2/¢bu. = ab/ﬂa, - au./vb = tt,BblBu.‘(alﬁ: - 8,771)

— tt'B,B /B, B30, — 0.7,) = t'B,B,H@u; — 0.4,

= t/BbjBrLi(ajvi - azﬂj) = ab’?a - aaﬂb = 2¢ba ’
and therefore -

/Vc/¢bﬂ. = Vc¢bu. == ﬂcha - vu.Gcb

= '¢'(n;B,'G;»B.’B,* — 7.B.*GB./B,Y)
tt’CC’(ﬁlelgl,,Bc"Ba‘ - ﬁ:Ba‘gpchﬂBbl)
= /vb/Gca. - /vu./Gbu. ’

i

which proves by virtue of (1.11) that the structure ("p,, ‘G,,) is normal.
Proposition 7.3. Let M be a contact Riemannian submanifold of a normal

contact manifold M, and suppose that the dimension of M is greater than the

codimension of M in M. In order that M be a normal contact submanifold in

M it is necessary and sufficient that

(7.1) > PAHAji = ngi + Ku,u,
y)

hold, where
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(7.2) P,= —(uu)™ }; ughp, ,

and H and K are suitable scalar functions defined on M.

Remark. As it is easily checked, the left hand member of (7.1) is inde-
pendent of the choice of the unit normal vectors to M.

Proof of Proposition 7.3. Let M be a normal contact submanifold in M.
Then by the definition of normality we have

Njih = ij(Vrfih - Vif‘rh) - fiT(Vrfjh - ijrh) + vjViuh’ — p.iVju" = 0

because of Proposition 4.4. Substituting (3.15) and (3.18) into the above
equation and taking account of (4.4), (6.6), Proposition 4.4 and Corollary 4.5,
we find

Njih = fj’ui(al‘ + ; P,H ") — firuj(af + ; P,H ")
+ u) H{(fF + ; u M Ju, — (f + ; uHJu}=0.

(7.3)

On the other hand, we know that the vector field & is a Killing vector field if
the contact Riemannian structure is normal. Thus, from (3.18) and (4.7),
we have

(74) ; uAHAﬁ =0,

Substituting (7.4) into (7.3) and taking account of (3.14), we obtain
N;* = {2 PH,"» — (wu)' 3, u o fruy — fru) =0,
A 4 A

and therefore 3, P,H,;; = (wu)"' 3] v’g;; + Ku,u;, which proves the ne-
A A

cessity of the given condition.
Conversely, suppose that in a contact Riemannian submanifold M in M the
condition (7.1) holds. Differentiating

(7.5) f, = Pu,

covariantly, we get V;f,; = VP, u; + P,V ,u;. Substituting (3.16) and (3.18)
into the above equation, we find

— U8 + ; (HB]ihBA -giLBAj) — fihHAj)L
= VjPAui + f(fji + § uBHBji) s

which together with (7.5) implies



34 MASAFUMI OKUMURA
-2 PAuAgji + 2 (HBjihBAPA - PPuiLBAj) -2 PAHAjhfih
4 B4 B4 7
= uz‘PAVjPA + 2 Pz(fji + 2 uBHsz') .
p) A 4 B

Transvecting this with f/¢ and making use of (7.1), we get — i (Hgn +
Kuju,) = 2m 3, P,* from which H = 3 P 2. Therefore (7.1) reduces to
A A4

(7.6) ; P,H,; = ; Pig;; + Kuju, .
Substituting (7.6) into the left hand member of (7.3), we find
Ny = (f u; — fru)l + 2 5’2 — (uur)™!

= (uuw) N uu + u,u }; Py — D uy — fluy)

(7.7)

On the other hand, (7.2) and (6.11) imply
2 PP = (wu)? ) ughgichey = (wu)™ 35 ug .
A B¢ (7]

Thus, from (3.14) and (7.7) it follows that N,;* = 0, which completes the
proof of the sufficiency.

Corollary 7.4. Let M be a contact Riemannian submanifold in a normal
contact ‘manifold M. If M is a totally geodesic or a totally umbilical sub-
manifold in M, then M is a normal contact submanifold.

As we have mentioned in the previous paper [3], every totally umbilical
submanifold M in a normal contact manifold M is not a normal contact sub-
manifold. In [3] we have proved that a normal contact submanifold of co-
dimensjon 2 in a normal contact manifold of constant curvature is either an
F-invariant submanifold or a totally umbilical submanifold. However, if the
codimension is greater than 2 we cannot prove this fact, because by Proposi-
tion 7.2, for example, an F-invariant submanifold ‘M in a totally umbilical
submanifold M in M is also a normal contact submanifold in . In general, a
normal contact submanifold in a normal contact manifold is neither F-invariant
nor totally umbilical.

Proposition 7.5. An F-invariant submanifold in a normal contact mani-
fold is a normal contact submanifold.

Proof. Since the submanifold is F-invariant, it follows that f, =0, u, =0
(A=1,--.,2(n — m)). Consequently we have uu* = 1 because of (3.14).
Substituting these into the left hand member of (7.3), we find

N;» = (A — @u) ) u; — fhu) =0,

which completes the proof.
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